Dynamic causal modelling of distributed electromagnetic responses

نویسندگان

  • Jean Daunizeau
  • Stefan J. Kiebel
  • Karl J. Friston
چکیده

In this note, we describe a variant of dynamic causal modelling for evoked responses as measured with electroencephalography or magnetoencephalography (EEG and MEG). We depart from equivalent current dipole formulations of DCM, and extend it to provide spatiotemporal source estimates that are spatially distributed. The spatial model is based upon neural-field equations that model neuronal activity on the cortical manifold. We approximate this description of electrocortical activity with a set of local standing-waves that are coupled though their temporal dynamics. The ensuing distributed DCM models source as a mixture of overlapping patches on the cortical mesh. Time-varying activity in this mixture, caused by activity in other sources and exogenous inputs, is propagated through appropriate lead-field or gain-matrices to generate observed sensor data. This spatial model has three key advantages. First, it is more appropriate than equivalent current dipole models, when real source activity is distributed locally within a cortical area. Second, the spatial degrees of freedom of the model can be specified and therefore optimised using model selection. Finally, the model is linear in the spatial parameters, which finesses model inversion. Here, we describe the distributed spatial model and present a comparative evaluation with conventional equivalent current dipole (ECD) models of auditory processing, as measured with EEG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic causal modelling of induced responses

This paper describes a dynamic causal model (DCM) for induced or spectral responses as measured with the electroencephalogram (EEG) or the magnetoencephalogram (MEG). We model the time-varying power, over a range of frequencies, as the response of a distributed system of coupled electromagnetic sources to a spectral perturbation. The model parameters encode the frequency response to exogenous i...

متن کامل

Dynamic causal modelling of precision and synaptic gain in visual perception — an EEG study

Estimating the precision or uncertainty associated with sensory signals is an important part of perception. Based on a previous computational model, we tested the hypothesis that increasing visual contrast increased the precision encoded in early visual areas by the gain or excitability of superficial pyramidal cells. This hypothesis was investigated using electroencephalography and dynamic cau...

متن کامل

Dynamic causal modelling of the response to frequency deviants

This paper describes the use of dynamic causal modelling to test hypotheses about the genesis of evoked responses. Specifically, we consider the mismatch negativity (MMN), a well characterised response to deviant sounds and one of the most widely studied evoked responses. There have been several mechanistic accounts of how the MMN might arise. It has been suggested that the MMN results from a c...

متن کامل

Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise?

Dynamic causal modelling (DCM) was introduced to study the effective connectivity among brain regions using neuroimaging data. Until recently, DCM relied on deterministic models of distributed neuronal responses to external perturbation (e.g., sensory stimulation or task demands). However, accounting for stochastic fluctuations in neuronal activity and their interaction with task-specific proce...

متن کامل

Dynamic causal modelling revisited

This paper revisits the dynamic causal modelling of fMRI timeseries by replacing the usual (Taylor) approximation to neuronal dynamics with a neural mass model of the canonical microcircuit. This provides a generative or dynamic causal model of laminar specific responses that can generate haemodynamic and electrophysiological measurements. In principle, this allows the fusion of haemodynamic an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2009